Benefits of measuring organisational rescue time and sharing data globally

Performance Optimisation Program (POP)

International Conference on Drowning Prevention (CIPREA) 2018, Málaga

POP is developed and supported by:

The Danish Council for Greater Water Safety, Denmark http://www.badesikkerhed.dk/en/

The North Zealandic Lifeguard Organisation, Denmark http://livredningstjenesten.dk/

Q2M2 <u>www.q2m2.com</u>

The rescue phase

Szpilman, D., Tipton, M., Sempsrott, J., Webber, J., Bierens, J., Dawes, P., Seabra, R., Barcala-Furelos, R. and Queiroga, A.C., 2016. Drowning timeline: A new systematic model of the drowning process. The American journal of emergency medicine, 34(11), pp.2224-2226.

How do we measure the average rescue time?

Test standard published at WCDP in 2017: www.q2m2.com/WCDP2017/proposal

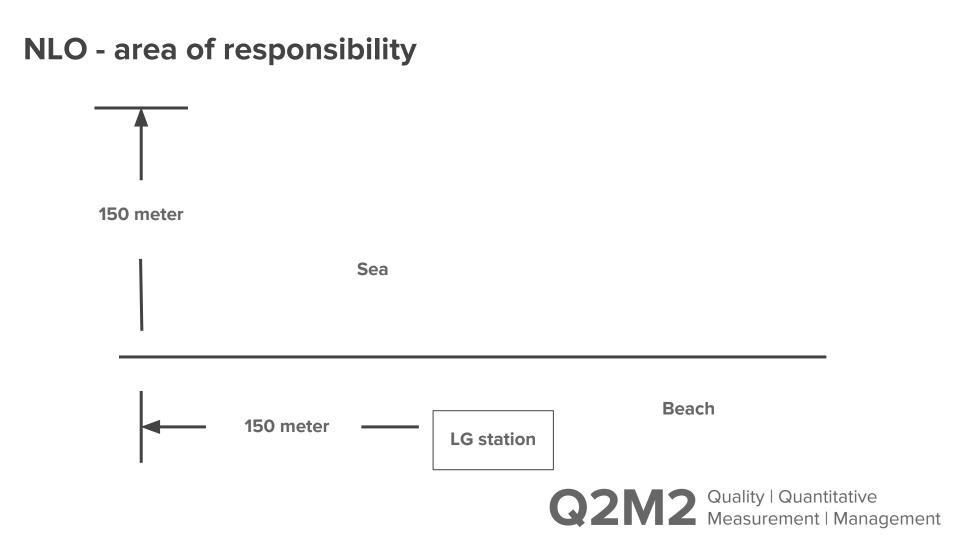
Main features are:

- **Representative** sampling
- Unwarned tests
- □ Sample size is preferable larger than five pct.
- **Rescue time = observation time + operation time**
- Measured from an incident occurs until lifeguard is at the position

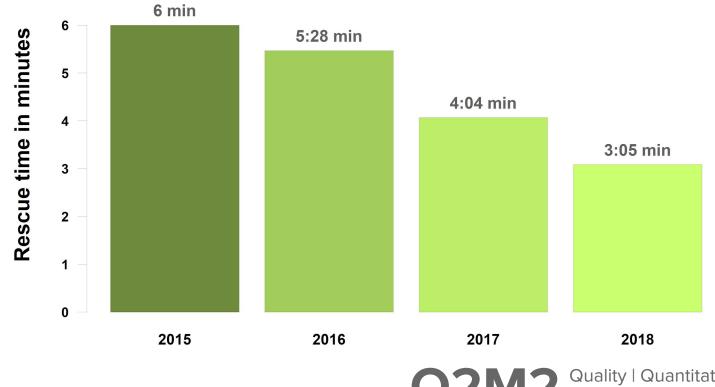
NLO

A Nordic Surf Lifeguard Organization (NLO)

- Operating +20 lifeguard stations
- ~ 70 km between the east and the west outposts
- Mid June to mid August
- One lifeguard per station
- Opening hours 10.00 am to 06.00 pm



NLO area



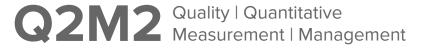
NLO Lifeguard station

Average rescue time for NLO 2015 to 2018

What can affect the rescue time?

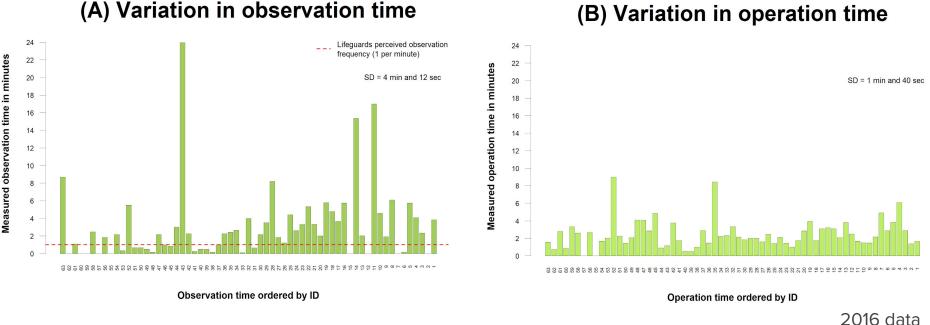
Variables investigated:

- 1. Year
- 2. Date
- 3. Period
- 4. Time
- 5. Time of day
- 6. GPS for lifeguard station
- 7. GPS for drowner
- 8. Distance from lifeguard station to drowner
- 9. Flag
- 10. Beach
- 11. Distance to shoreline from lifeguard station
- 12. Beach guests
- 13. Surf size
- 14. Wind speed


- 15. INS 1
- 16. INS 2
- 17. Visibility above water
- 18. Seaweed in water
- 19. Visibility above water
- 20. Lion's mane jellyfish
- 21. Calls 112
- 22. Level of communication and analyzing before action-taking
- 23. Use of wetsuit
- 24. Engine starting problems
- 25. Mode of Transportation
- 26. Use of wetsuit
- 27. Pre-warning of lifeguard
- 28. Third-part control
- 29. Age of lifeguard

- 30. Years of experience of lifeguard
- 31. Lifeguards days on beach current season
- 32. Experience with real-life emergencies
- 33. Sharp INSITU
- 34. Self INSITU
- 35. Standard INSITU
- 36. Test time for 50 meter swim
- 37. Test time for 1200 swim
- 38. Score in theory test
- 39. And more...

The effect of beach guest - and not the lifeguard observes the indident (2016) Rescue time in minutes No Yes


Was it a beach guest that notified the lifeguard about the drowning incident?

Comparing the difference among NLO's three main areas (2016)

Observation time matter the most (by far)

(B) Variation in operation time

Observation time accounts for 60 pct of the full rescue time

Vittone and Pia (2006) indicates that an instinctive **drowning** incident takes between **20 and 60 seconds**

Mario Vittone and Francesco A. Pia, 2006. *It Doesn't Look Like They're Drowning -How To Recognize the Instinctive Drowning Response*, Journal of US Coast Guard search and rescue. p. 14.

Data collection form

https://form.q2m2.com/dnk-2018-rt/

- **Continuously improving** the average rescue time
- Develop methods to achieve **acceptable** rescue time
- Find the most **cost-efficient** methods to achieve acceptable rescue time

Sharing data on rescue time that will benefit all and enable everyone achieving the best possible rescue time

